by Tian Cilliers
|0l Training Camp 3 (3-4 March 2018)

Definitions

S
Trie

A trie (pronounced as in retrieval), also called a prefix or radix tree, is an ordered tree data
structure used to store a dynamic set where the keys are usually strings.

* Can be used to store any associative data type

Root node is empty

Each node contains the prefix of all its children

* Not every node has to define a value, some can be intermediate nodes
* Can provide lexicographical sorting

Example

Storing the following values:

* Cpp
* can
* cat
*in

Implementation
e

Fundamental Structure
The first requirement is to setup a basic tree structure with the following properties:

* Each node can point to one child node for each letter in the alphabet
* Each node needs to store whether it represents a value in the dataset

Example:
#define ALPHABET SIZE 26 /] size of the alphabet
#idefine FIRST CHAR 'a' J/ letter that should be index ©

struct Node {
Node* children[ALPHABET SIZE]; J/ child nodes
bool isValue; /] whether the node is in the set

Implementation
e

Insert Value
Start at root node Of tree.

For each character in string value:
* If child node corresponding to character doesn’t exist, add new empty node
* Descendto child node

Mark last node as valid value

Implementation

Insert Value

Demonstration:

Adding string ‘cpp’ to tree

Implementation
e

Insert Value

Example:
void insert(Node& root, string str) { [/ insert the wvalue str into the trie with specified root
Node* current = &root; [/ pointer to current node, starts at root
for (char chr : str) { [/ loop through all characters of string
int index = (int)chr-FIRST_CHAR; f/ convert character to @-based list index
if (!current->children[index]) f/ if the pointer to next child node is null
current->children[index] = new Node; f/ node hasnt been assigned, create new node
current = current->children[index]; [/ descend to child node
1
current-=>isValue = true; [/ set last node to be in set

Implementation

Find Value
Start at root node Of tree.

For each character in string value:
* If child node corresponding to character doesn’t exist, exit and return false
e Descend to child node

Return true if last node is marked as valid

Implementation

Find Value

Demonstration:

Finding string ‘cpr’ in tree

Implementation

Find Value
Example:

bool find(Node& root, string str) {
Node* current = &root;
for (char chr : str) {
int index = (int)chr-FIRST_CHAR;
if (!current->children[index])
return false;
current = current-=children[index];

1

return current-=isValue;

check whether str is contained in trie with specified root
pointer to current node, starts at root

loop through all characters of string

convert character to 0-based 1list index

if the pointer to next child neode is null

str isnt fully contained in trie, exit and return false
descend to child node

last character of str has been reached, return true if node

Analysis

e
Time Complexity:
* Insert: O(L)
* Find: O(L)
Space Complexity: O(NL)

Example

Longest Prefix (101 1996)

Given a set of short strings P and a longer string s, calculate the length of the longest prefix of
s such that the prefix equals to a concatenation of some (possibly repeated) elements of p

Sample 10:

Input Output

A AB BA CA BBC 11

ABABACABAABC

Example
e

Longest Prefix (101 1996)

Solution:

We use a DP solution to find which characters are reachable by constructing a prefix from
some elements of p. Let DP[i] denote whether it is possible to constructa prefix of length 1.
Initially, DP[0] = true. Firstly, let’s construct a trie containing all the elements of p.

Now, loop through all i for which bp[i] is true, and for each loop we do the following:

e Start at the root of the trie

* Run a while loop with iterator n, and each time descend down the trie to character s[i+n]
setting DP[i+n] = true. If the node doesn’t exist, terminate the inner loop

Time complexity: O(|S]?)

Questions?

